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An integral equation for unsteady surface waves and 
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An integral equation for unsteady inviscid surface waves has bee.n obtained. 
Existing known approximations are all derived from the one equation. The 
Boussinesq equation is obtained and criticized. 

1. Introduction 
The study of time-dependent free-surface flows was first developed by Airy 

(1845) and Stokes (1849). The theory developed by Stokes was appropriate for 
small-amplitude waves of arbitrary wavelength. He showed that unsteady 
waves of this type were a superposition of steady progressive waves of the form 

7 = a sin a(x  + ct). (1 .1)  

The waves were dispersive with the wavelength 2nla a.nd wave velocity c 
connected by the relation 

ac2 = g tanhah, 

where g is the acceleration due to  gravity and h is the undisturbed height. 
Airy developed a theory for long waves of small amplitude. From the theory 

emerged the fact that  long waves must change their form as they advance. How- 
ever, this seemed to  contradict the experimental discovery of the steady solitary 
wave by Russell ( 1  844). Later Boussinesq showed that the incorrect predictions 
of the Airy theory were due to the assumption of infinite wavelength, or more 
specifically,due to the neglect of terms of order h2/h2 (where h is the wavelength). 
He used an unsteady theory and went on t o  develop what are now known as the 
Boussinesq equations. I n  terms of u the mean particle velocity and 7 the height 
above the undisturbed height, his equations take on the form 

and 

a7 au a 
%+h--+- ( U T )  = 0 ax ax 

au au a7 h a37 
-+u-+g-+-- = 0. 
at ax ax 3 at2ax 

7 Present address: Tait Institute of Mathematical Physics, University of Edinburgh, 
Edinburgh, Scotland 
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He also simplified these equations by eliminating u to get 

Equation (1.4), however, has one disadvantage over (1 2) and (1.31, which to 
date seems to have gone unnoticed. Both equations describe waves moving in the 
positive and negative x direction with an approximate speed of (gh)* and both 
give 7 correct to the first order in a ,  the amplitude, However, (1.2) and (1.3) give 
the unsteady part (strictly speaking, the part that does not satisfy the wave 
equation) to order u2, whereas (1.4) does not. This will be shown more thoroughly 
later. 

Both sets of equations have steady solutions, one of which correspocds to the 
solitary wave, whose solution was obtained by Boussinesq. These permanent 
finite-amplitude wave forms were discovered by Korteweg & de Vries (1895), 
who called them cnoidal waves. These waves reduce the limiting case to the 
solitary wave found by Boussinesq. They also obtained a simpler equation for 
unsteady waves, that can be obtained from (1.2) and (1.3) by assuming that waves 
propagated only in one direction and by making an approximate integration. 
Their equation is 

qt+ c( 1 + +(r/h) qz) + QCh2T/zzz = 0. 

Both the Boussinesqand the Korteweg & de Vries equations have been studied 
extensively. Of the more recent work, Peregrine (1966) uses equations (1.2) and 
(1.3) for a numerical calculation of an undular bore. He also uses a modified ver- 
sion for the approach of long waves up a sloping beach. The numerical method 
used by Peregrine was extended by Chan, Street & Strelkoff (1969) to find the 
run up of a solitary wave on a wall. They also give a completely numerical solution 
of the Navier-Stokes equationsfor the case of the run up of a solitary wave. M$J%I- 
(1962) uses (1.4) in his discussion of the interaction of two solitary waves going 
in the opposite direction. Whitham (1965a, b,  1967) discusses solutions of both 
(1.4) and (1.5) and uses them to illustrate his theory of non-linear dispersive 
waves. 

The main problem in obtaining an equation for 7 is that although the height 
depends on two variables, x and t ,  we have to introduce a third independent 
variable y ,  a vertical co-ordinate, which in a sense is not part of the (x, t )  space 
in which the wave propagates. This is because the velocity components, whose 
values are needed on the free surface, depend on all three (x, y ,  t )  variables. In 
this paper we will show that by a suitable transformation of co-ordinates we can 
reduce the equation to one where the variation with respect to the vertical co- 
ordinate is replaced by an integral over the free surface. Whitham (1967) makes 
the point that dispersion is best represented by an integral since all high-frequency 
effects are lost by the long wave expansion. The integral equations found here 
are of necessity very complicated since no approximation is made. However, 
it is hoped that from the exact equations we could obtain suitable solvable 
equations that would describe waves of greatest height with the Stokes 120' angle 
at  the crest and also the alternative of breaking into bores. Both of these pheno- 
mena are essentially high-frequency effects rather than non-linear effeats. 
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2. Derivation of the exact integral equation 
We assume that the fluid is incompressible and inviscid and that it flows over 

a horizontal bottom. The motion is assumed to  be two-dimensional and irro- 
tational. The physical co-ordinate axes are chosen so that the bottom is y = 0, 
as shown in figure 1. 

i 

Y 

FIGURE 1. The co-ordinate axes. 

The first step in the analysis is to transform from the physical co-ordinates 
( x ,  y ,  t )  to  new co-ordinates (c,& 7) so that the flow region 

--co<x<oo, O < y < h ( x , t )  

is transformed into the strip -co < 5 < co, 0 6 5 < 1. For completeness we 
also assume that x = 0 is transformed into 6 = 0. This may be achieved by 
noticing that the reverse transformation is simply a Dirichlet problem with y 
given everywhere on the boundary q = 0 and q = 1. 

Thus if h(x, t )  3 h(g, 7) the transformation is given implicitly by (e.g. see 
Woods 1961) 

t = 7. (2 .3)  

a#/ax = u and a+/ay = u, 12.4) 

We introduce a velocity potential $ by 

where u and v are the horizontal and vertical velocity components of the fluid. 
Then the equations and boundary conditions that govern the solution of 9 

ah a$ah a$ 
at ax ax ay 
-+---- = 0 on y = h ( x , t ) .  (2.7) 

40-2 
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A final equation is obtained from Bernoulli’s equation, which states that 

and in particular on the free surface, where the pressure is constant, 

+gh = f ( t )  on y = h(z,t) .  

(2.8) 

(2.9) 

Since the transformations (2.1) and (2.2) are conformal, in the sense that z + i y  
is an analytic function of <+ i f ,  (2.5) is transformed simply to  

and the boundary conditions (2.6) and (2.7) expressing the value of the normal 
derivative of Q are transformed into 

a+laf = 0 on f = 0 ,  (2.11) 

(2.12) 

The problem of finding the function Q is now a Neumann problem since the 
normal derivative of q5 is given on the boundaries f = 0 and & = 1 (again see 
Woods 1961). 

Thus the solution for Q is 

The final equation that determines h(<,7)  is given by substituting in (2.8). 
However, we first have to transform (2.8) into (<, [,7) co-ordinates. The required 
form of (2.8) is 

+- “3)’ ( “ ) 2 ] / w + g ( h )  = f ( t )  011 [ = 1. (2.14) 
2 x + z a(<,&) 

All the derivatives in the [ direction can be obtained as integrals over the whole 
range of 5. Thus we have eliminated the [ dependence and are left with an integral 
equation where < and 7 are the only independent variables. 

3. Derivation of existing theories from the integral equation 
By using the appropria,te approximations we can derive existing theories for 

Stokes waves 
unstea,dy surface waves. 

The Stokes wave is derived by assuming that the equation for the height 91 above 
the mean water level can be linearized in 7. 

We have to exercise care when we are dealing with waves that do not tend to 
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zero as 2 + 00. The kernel in the integrand of (2.13) tends to +constant 
as Q + co and if a(x, y)/a(c, r )  is sinusoidal then we must take the generalized 
value of the integral. For a more careful argument see Lighthill (1958). 

The solution of (2.13) and (2.14) is most easily obtained by taking Fourier 
transforms with respect to g along < = 1. If we denote the Fourier transform with 
respect to by bars, then from (2.13) 

- 
Q(k,r) = ( 2 n ) - * j ”  eikcQ(c,  1 ,7 )dg  

-a 

where 

= - (2n)-$J 1 e i k c  X (  < - c0, 7) log (cosh nc0 - 1) 
--m - m  

Then if Y = hO+T(5,7) 
to a first approximation x = hOaT/ar, 

- 
so that (3.1) becomes 

Then linearization of (2.14) yields 

Q = - k-lcoth k %/&. 

$7 + ST = f ( 7 )  -f(h,). 

$,+g-i, = 0. 

Again taking the generalized Fourier transforms, we obtain 
- 

Thus by eliminating Q we obtain 

g-i, + h, k-l coth k ;12ij/a+ = 0, 

p 2  = gk tan k/h,. 

7 = Im B(k)sin (pt+k<+a(k))dk 

with solution 7 = A(k)sin(pt+a(k)), 

where 

Thus 

with the usual dispersion relation 

-a 

p2 = gk tanh K/h,. 

The zeroth approximation of (2.2) suffices to  determine x 80 tha.t 

2 = s,’ (c?y/ag) a< = hot: 

and 
W 

11 = 1 B(1c) sin [(pt  + (kx/ho)) + ak] dE. 
--m 

The Boussinesq equation 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

( 3 4  

(3.9) 
(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

We can now recover the fourth-order partial differential equation corresponding 
to  (1.4) by making the assumption that N ,  the non-dimensionalized height above 
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the mean water level, is of order a and that ai+jN/apW = O(ah(i+j)+l) and 
retaining terms up to order a3. Again as in the case of Stokes waves we have to be 
careful when we are studying waves that do not tend to zero at  co. For example, 
we might have uniform cnoidal waves a t  infinity or we might have a bore situa- 
tion where the water levels a t  & co are different. In  these problems difficulties 
arise because we have to specify the velocity at  00. These difficulties can be over- 
come by differentiation. Thus if we differentiate (2.13) twice with respect to 5 
then the kernel becomes exponentially small at  co and so the integral converges. 
Then we can satisfy the conditions at  cg by integrating or simply leave the con- 
ditions as initial conditions to be satisfied by the solution of the final differential 
equation. Similarly, the function f (7) can be eliminated by one differentiation 
with respect to 5. Here we will not deal with these problems but restrict ourselves 
to flows where N tends to zero at co. 

To non-dimensionalize (2.13) and (2.14) we use (gh,)B as a velocity scale and 
h, as a length scale. Denoting non-dimensional quantities by capitals we can 
obtain, after lengthy but straightforward caloulations, 

+ N +  ... = P(T)- 1. (3.16) 

Elimination of CD then gives, after two differentiations with respect to 5, 

This is the appropriate form of the Boussinesq equation in (6, T) variables. If 
we revert to ( X ,  T) variables we can obtain 

al 
+N,,,, + Nxx - N,, + 2NqYx + N2, + SNZ, - N N , ,  - 2NTXIx A;, = 0. 

(3.18) 

The steady solitary wave solution can be found by looking for a solution of the 

N = UN1(X +FT). (3.19) 
form 

We then find that 

Nl = (F2- l ) / (nF2) sech2&[3(F2- 1)]4(X'+FT). (3.20) 

Thus F2 = 1 + u to order u2 and we can write 

iVl = sech2&(3a)*(X+FT). (3.21) 
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It should be noted that (1 .4)  and (3 .18)  are different unless we replace a/aT by 
a/aX in the higher-order terms. This is permissible to our order of accuracy in the 
terms NNTT but not in the terms N$. The difference between the two equations 
is that (3 .18)  includes all terms that give a contribution of order a3, whereas ( 1 . 4 )  
represents an equation that gives N correct to order a. Thus while (1 .4 )  and (3.18) 
give aN,, the first approximation to N ,  accurately, (3 .18)  gives us partial in- 
formation about the second approximation. 

For example, if we look for a solution appropriate to two waves going in oppo- 
site directions and substitute 

N = aNl( X + Fl T) + aN,(X - F2 T ) ,  (3 .22)  

we find that the equation is not separable unless we introduce a term a2N3 t o  the 
right-hand side of (3 .22) .  This gives an order a3 term in (3.18),  and we obtain 

5 ( F 3 ( 3 a ) N F - ( F : -  l ) / a N ; + ( 2 + P ~ ) N , N ; + N , 1 2 ( l + 2 F ~ )  
,=l 

= N 3 T T -  N3xx - N;N2(2 - 2 4  F2- F;)  - N i N l ( 2  - FiF2 - Fi) 
+N;NL(4F1F2- 2 ) .  (3 .23)  

Fj = 1 +&a, (3 .24 )  
Again to order a2 we can write 

where k, are constants of order one. 

side of (3.23) zero by choosing 
Then, to complete the separation of variables we must make the right-hand 

Z+FT X - F T  N -  (2F2F1 - &(t) d t  + N ;  f N2(t )  d t  + 2NlN2].  (3 .25)  
- 2(1+F1F2)  O 

Then we can obtain the solution for N1 and N, as 

Ni = Kisech2$(3aK,)a(X-( - l ) iqT)  (3 .26)  

and provided Fl and F2 are the same sign 

N3 = $Kl K ,  sech2 & (3aK,)*  ( X  + Fl T )  sech2 $ ( 3aK,)* ( X  - F, T )  
- $K,K,[(Kl/R,)tsech2&(3aKi)l ( X  + FIT) + (K,/K,)~sech2 &(3aK,) l  

x ( X  - F2T)] x tanh$(3aKl)3 ( X  + FIT) tanh $(3aK,)d ( X  - F2T) 

+ N4( x + PI T) + A\( x - F2 T) . (3 .27)  

If we use the already-known second approximationa to the steady solitary 
wave (Laitone 1960) we can obtain N4 and N5. Thus the complete second approxi- 
mation to the interaction of two solitary waves is 

2 

i = l  
N = C {aNi-~a2Ni(Ki-N,)}+&u2NlN2-$a2(K1K2)~(Nl+N2) 

x tanh$(3a,)3(X+F,T)tanh$(3cz2)t(X-F2T), (3 .28)  

where Ni = K , ~ e c h 2 & ( 3 a ~ ) B ( X - ( - l ) ~ q T ) ,  (3 .29)  

Fq = 1 +K,a-K:a2/20+O(a3), (3 .30)  

and czi = kia( i  - :qa) + 0 ( ~ 3 ) .  (3 .31)  
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The run up, R, of a solitary wave of amplitude, a, against a vertical wall can 
be obtained by putting Fl = F2 and I<, = K ,  = 1 and finding N at X = T = 0. 
This gives 

R = 2a+ia2+o(a3). (3.32) 

This compares favourably with the experiments of Camfield & Street (1969) 
and the numerical results of Chan, Street & Strelkoff (1969) (see figure 2). 
Equation (3.28) does not agree with the interaction obtained by Benney & Luke 
(1964). However, their result has to be in error since the travelling wave part of 
the solution does not agree with the second approximation of Laitone (1960). 

I I I I I 1 I 

Numerical results 

1st approxiination 
R=2a 

Non-dimensional amplitude of solitary wave 

FIG~JEE 2 .  Run up of the solitary wave against a vertical wall plotted as a function of wave 
amplitude. Figure also includes numerical results of Chan, Street 8; Strelkoff (1969) and the 
experimental results of Chamfield & Street (1968). 

This approach also shows that two solitary waves of almost equal speeds 
going in the same direction must have an order a interaction. This is because the 
term (1 + Fly2)  in the denominator of expression (3.25) becomes zero to order a. 
Thus me are unable to make the right-hand side of (3.23) zero with a term a2N,. 
This poses many questions as to what happens in this interesting case. Does the 
interaction rise to order a and fall to zero as the waves pass through each other, 
or do the two waves coalesce and form one wave with a different wave velocity 
and amplitude ? 

The work done by Lax (1968) suggests that two solitary waves travelling in the 
same direction do emerge unaltered, except for a possible change in phase. How- 
ever, he uses only the Korteweg & de Vries equation and does not produce an 
analytic solution. 
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4. Conclusions 

633 

An integral equation has been derived for the unsteady motion of the free 
surface of an inviscid fluid. It has been shown that existing theories can be 
obtained from the integral equation by making the appropriate assumptions. 
The correctly derived Boussinesq equation is found to contain the interaction of 
two steady wave trains going in opposite directions. This interaction is found for 
the case of two solitary waves. When the waves are equal the result has been 
compared with available experimental observations and numerical results for 
the run up of a solitary wave against a vertical wall. 
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